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We explore the role of electron correlation in quasi-one-dimensional quantum wires as the range of the
interaction potential is changed and their thickness is varied by performing exact quantum Monte Carlo
simulations at various electronic densities. In the case of unscreened interactions with a long-range 1 /x tail
there is a crossover from a liquid to a quasi-Wigner crystal state as the density decreases. When this interaction
is screened, quasi-long-range order is prevented from forming, although a significant correlation with 4kF

periodicity is still present at low densities. At even lower electron concentration, exchange is suppressed and
the electrons behave like spinless fermions. Finally, we study the effect of electron correlations in the double
quantum wire experiment �Steinberg et al., Phys. Rev. B 73, 113307 �2006�� by introducing an accurate model
for the screening in the experiment and explicitly including the finite length of the system in our simulations.
We find that decreasing the electron density continuously drives the system from a liquid to a state with quite
strong 4kF correlations. This crossover takes place around 22 �m−1, near the density where the electron
localization occurs in the experiment. The charge and spin velocities are also in good agreement with the
experimental findings in the proximity of the crossover. We argue that correlation effects play an important role
at the onset of the localization transition.
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I. INTRODUCTION

It is well known that the effect of interactions in quasi-
one-dimensional �Q1D� systems of electrons, usually called
“quantum wires,” is enhanced compared to higher dimen-
sional systems. There are universal properties described by
the Luttinger liquid paradigm, the effective low energy
theory which applies for strictly one-dimensional �1D�
models,1–5 such as spin-charge separation, charge localiza-
tion, and conductance quantization. However, the micro-
scopic details, such as the width and type of the transverse
confinement or the distance and shape of neighboring screen-
ing media, can have a large impact on the properties of the
Q1D systems as they are very sensitive to the effective in-
teraction. These systems can be realized in semiconductor
structures, where there are elegant experimental studies,6–12

and it is essential to describe the system accurately for a
realistic comparison of theory and experiment.

In this paper we study how the thickness, finite size, and
screening affect the phase boundaries of some universal fea-
tures with a particular emphasis on the charge localization
and spin properties. We address the issue of how the electron
correlation depends upon the microscopic details param-
etrized in the interaction using ground-state quantum Monte
Carlo �QMC� methods13 such as diffusion Monte Carlo,14,15

and its lattice regularized version16 which are ideal numerical
tools to study Q1D systems, since they provide exact results
in one dimension. Previous QMC studies regarded the deter-
mination of the Luttinger liquid �LL� parameters for a Q1D
system with screened interactions17 and the ground-state
properties of a model with a long-range Coulomb potential.18

Here we compare various model interactions in a unified
picture, with the final goal of quantifying the role of corre-
lation in the localization transition found by Steinberg et al.12

With this aim it is particularly important to include both
the effects of the long-range Coulomb potential and the con-
sequences of its screening in the interactions. In dimensions
larger than 1, the 1 /x tail of the Coulomb pairwise potential
leads to a Wigner crystal phase of the homogeneous gas at
low densities when the potential energy dominates over the
kinetic contribution.19–21 In this regime the spin exchange
drops to an exponentially small value22 as the overlap be-
tween unlike spin particles is exponentially suppressed by
the localization of the electrons. Therefore, one of the signa-
tures of the liquid-to-crystal transition is a decrease in the
spin stiffness. However, it is possible that other spin and
charge phases could exist in between.

In 1D the situation is radically different. It is well known
that a Luttinger liquid with 1 /x interactions exhibits slowly
decaying charge-charge correlations, but no true long-range
order, as the quantum fluctuations are stronger in lower
dimensions.5 Nonetheless there should be a crossover from a
high-density liquid to a low-density regime with quasi-long-
range charge order also called a “fluctuating Wigner crystal”
�Ref. 23�. However the LL theory does not predict where the
crossover happens, as the correlation function parameters are
not universal but depend on the details of the interaction.
Also the interplay between charge and spin is quite unclear.
Indeed the LL parameters depend on the effective one-
dimensional potential in a nontrivial way. For instance, the
spin properties are strongly affected by its short-range behav-
ior which includes the effect of the thickness, as the trans-
verse dimension can effectively tune the spin exchange. On
the other hand, the quasiorder of the charge degrees of free-
dom is stabilized by the long-range tail. The relative impor-
tance of the short versus long-range correlations is set by the
microscopic model of the system. Recently Fogler24,25 pro-
posed that a correlated state with very small spin exchange
exists for ultrathin wires at densities between the liquid and
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the quasi-Wigner crystal phase. In the limit where the short-
range part can be effectively described by an infinite repul-
sive contact interaction, this state can be related to a nonin-
teracting spinless Fermi system as in the Tonks-Girardeau
gas.26 In a one-dimensional system of fermions, the coexist-
ence of strong short-range repulsions and very long-range
interactions leads to a peculiar state, which Fogler termed a
Coulomb-Tonks gas.

In previous theoretical work, quantitatively accurate stud-
ies of the liquid-to-crystal one-dimensional crossover have
been carried out only for inhomogeneous systems, with lon-
gitudinal extension controlled by an external confinement,
and where the finite �and very small� size allows one to solve
the problem by means of exact diagonalization.27–29 How-
ever, the broken translational symmetry leads to quite differ-
ent properties, particularly in the charge and spin-density
profiles.

From the experimental side, technological advances in the
preparation of cleaved edge overgrowth samples have en-
abled tunneling measurements between two high mobility
parallel wires, which probe striking features such as the spin-
charge separations in the excitation spectra.10 In a recent ex-
tension of the tunneling experiments, Steinberg et al.12 ap-
plied a gate to the upper wire in order to tune its electron
density by charge depletion. Below a critical threshold, mea-
surements revealed a dramatic transition which can be inter-
preted as the onset of localization in the wire. Although it is
believed that the transition is mainly driven by electron-
electron interaction effects as the liquid phase is in a ballistic
regime, so far there is no agreement between the critical
density predicted by theory and the actual experimental
value. Some features of the experiment, such as the fringes
of the differential conductance in the liquid phase and the
first two peaks of the tunneling current in the localized
phase, have been explained in an independent-particle
picture7,8 and at the mean-field level.30 The LL theory has
been applied to describe the general features of the tunneling
current in the Wigner state by assuming a spin incoherent
regime.31 However it is unclear at which density the spin
degrees of freedom become incoherent, as the spin velocity
measured in the experiment is in disagreement with previous
numerical estimates. Another open issue is related to the fact
that only a small fraction of electrons take part in the local-
ized state. It is clear that an accurate microscopic description
of the experimental situation is necessary to account for all
these features. In our study we include the most important
details such as an accurate screening and the effect of the
finite size of the wire to correctly describe and understand
the physics underlying the experiment.

Throughout the paper we use units of the effective Bohr
radius a0

�= �2�

m�e2 for length and the effective Rydberg Ryd�

= e2

2�a0
� for energy, where � is the dielectric constant of the

embedding medium and m� is the effective electron mass.
The paper is organized as follows: In Sec. II we present

results for a quasi-one-dimensional electron gas �1DEG�
with long-range �1 /x� interactions for different densities �
= 1

2rs
and thicknesses. We carefully study the liquid-to-

quasicrystal crossover by varying the Wigner-Seitz radius rs
which sets the relative importance of the kinetic energy and

the interaction. By means of QMC techniques, we also study
the charge compressibility and the spin susceptibility in order
to analyze the interplay between the charge and spin proper-
ties of the wire. The effect of the wire’s thickness on the
crossover and the spin properties is taken into account by
performing simulations with three different wire widths. In
Sec. III we compare the unscreened 1 /x potential with an
interaction screened by a metallic plane. In Sec. IV we inter-
pret the localization transition found in the series of two wire
tunneling experiments6–12 by studying the evolution of
liquid-to-crystal correlations in a finite wire with interactions
effectively screened by another parallel wire. We make a
comparison between the finite system and the corresponding
homogeneous infinite system interacting with the same po-
tential. We also show the agreement between our model and
the experiment. Finally in Sec. V we summarize our results
and comment on possible refinements to our calculations.

II. UNSCREENED COULOMB INTERACTIONS

We study a system of electrons interacting via the Cou-
lomb �1 /x� potential which are confined to one dimension by

a harmonic potential in the transverse direction V�r��=
r�

2

4b4 ,
where b tunes the thickness of the wire. This system was
previously studied using QMC by Casula et al.18 and here we
follow the conventions used in that work. We integrate over
the transverse degrees of freedom, which is a good approxi-
mation when the density of electrons in the wire is low �rs
��b /4�, and hence the longitudinal energy scale is small
compared to the excitation energies related to the perpen-
dicular motion. This integration yields an effective one-
dimensional interaction Vb�x�=

��
b exp� x2

4b2 �erfc� �x�
2b �, which has

a long-range 1 /x tail. The thickness b of the wire controls the
short-range behavior of the potential, which is finite at the
origin �V�0�=�� /b�. Since the crossover between the short
and long-range behaviors is at x�b, for smaller b the repul-
sion is stronger as the particles approach each other.

In this work we have chosen to study three different thick-
nesses: b=1, 0.1, and 0.0001. The first two values corre-
spond to typical experimental thicknesses for semiconductor
quantum wires, whereas the last one is chosen to explore the
ultrathin limit as studied analytically by Fogler24,25 and ex-
perimentally realized in carbon nanotubes placed on SrTiO3
substrates.32,33 For each value of b, the density in the wire
� 1

2rs
� is varied, allowing for the interaction strength to change

and the corresponding ground-state properties are computed.
We use diffusion Monte Carlo �DMC� and lattice regular-

ized diffusion Monte Carlo16 �LRDMC� methods to project
the initial variational ansatz to the ground state ��0�. These
methods are particularly suited to the simulation of one-
dimensional fermions. Indeed, the well-known “sign prob-
lem” does not affect these calculations as the nodes are fully
determined by the points of coincidence between the elec-
trons and therefore are exactly included in the trial wave
function ��T�. Since the final DMC or LRDMC distribution
is the product of the true ground state and the trial wave
function, some observables such as the density and the struc-
ture factor are determined using the forward walking
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technique34,35 in order to generate unbiased expectation val-
ues. The errors reported in our results are only due to statis-
tical fluctuations inherent in the Monte Carlo sampling of the
wave function, and they can be made arbitrarily small by
increasing the simulation length.

We simulate an unpolarized wire with N electrons subject
to periodic boundary conditions. The trial wave function is
written in the Slater-Jastrow form

�T = D↑D↓ exp	− 

i�j

u�xij�� , �1�

where the Slater determinants for up and down spin electrons
read

D	�x1
	, . . . ,xN	

	 � = �
1
i�j
N	

sin	G

2
�xi

	 − xj
	�� , �2�

with G=2� /L and L=2rsN the length of the simulation cell.
We follow Ref. 36 to determine the Jastrow function u�x�. Its
Fourier components are

2�ũ�k� = − S0�k�−1 + �S0�k�−2 + 2�Ṽb�k�/k2, �3�

with S0�k�= �k /2kF���2kF−k�+��k−2kF� the structure factor

of a noninteracting 1DEG, �= 1
2rs

the density, and Ṽb�k� the
Fourier transform of Vb�x�. To reduce the finite-size effects
in our simulation we use the Ewald technique to sum our
potential as discussed in detail in Ref. 18. This approach has
been used to study the infinite wire with the long-range po-
tential Vb�x� and also the screened potentials described in
Secs. III and IV. In the latter case, the sum over the images
has been done numerically in the real space as the potentials
have a shorter range.

To reveal the presence of charge ordering in the system,
we first analyze the static structure factor S�k�
= 1

N ��−k���k��, where ��k�=
 je
ikrj are the Fourier compo-

nents of the electron density. At high density the structure
factor is very similar to the mean spherical approximation37

�MSA� prediction SMSA�k�=S0�k� / �1+2�ũ�k�S0�k�� as ex-
pected �see Fig. 1�, since in the limit rs→0 the MSA be-
comes exact.18 Specifically, there is no peak at 4kF up to rs
=0.5 �rs=0.2� for b=0.1 �b=0.0001�, namely, there are no
correlations with the mean interparticle spacing �Fig. 2�. As
the density decreases, a peak develops at 4kF. This peak is a
necessary feature for a one-dimensional quasi-Wigner crystal
and it is absent in the MSA prediction which has no structure
at 4kF. For b=0.1 we carried out simulations with up to 450
particles for rs=0.5 and rs=0.75 to check the convergence of
the S�k� in the liquid regime close to the onset of the 4kF
charge correlations �Fig. 2�.

The scaling of the height of the 4kF peak of S�k� with the
number of particles �reported in Fig. 3 for b=0.1� highlights
the features of a liquid-to-quasicrystal crossover. When the
peak is absent there is no significant dependence of the
S�4kF� value as a function of system size, however when
there is a peak in the structure factor at 4kF, its scaling is
sublinear, signaling a quasi-long-range order �linear scaling
would indicate a true Wigner crystal�. The points in Fig. 3
are fit very well by a functional form obtained from the
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and b=0.0001 �lower panel�, computed for a system with 78 elec-
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charge-charge correlation function38 derived by Schulz23 in
the LL framework with long-range interactions

�
c0

L

dx exp�− i4kFx���0���x�� = aL exp�− 4c�log L� + b ,

�4�

where we explicitly include the dependence on the system
size L by taking the Fourier transform over the simulation
cell. The short-distance cutoff c0 is introduced because the
LL theory provides only the asymptotic behavior for
��0���x��. Further logarithmic corrections could be
included39 in Eq. �4�, but we take just the leading-order ex-
pansion, which should be the most relevant for the system
sizes computed here. One would need much larger systems
which are beyond our current numerical capabilities to re-
solve further corrections. The bosonization formalism gives a
parameter dependent scaling for the 4kF component of
��0���x�� which is left undetermined in the LL theory and
depends on the details of the interaction. At high densities
there is no peak in the structure factor and the electron gas is
liquid �Fig. 2�. Consequently, there is no finite-size depen-
dence at 4kF and the parameter a undetermined in the LL
theory is zero.

We also determine the charge compressibility � and the
spin susceptibility  of the electron gas. To compute � we
used two techniques. The first is to apply the definition of
that quantity as the reciprocal of the second derivative of the
total energy with respect to the density rs. Our QMC calcu-
lations provide measurements of the total energy, so these
derivatives can be taken by fitting our data with a suitable
functional form. The error in such a determination comes
from both the statistical uncertainty in the calculations and
the constraint represented by the choice of the fitting func-
tion. As a technical detail, it is also necessary to extrapolate
the energy to the thermodynamic limit which can be a costly
proposition. Nevertheless, we can compute the charge com-
pressibility, and validate the second method to evaluate �,

using the parametrization in Ref. 18, which holds for a sys-
tem with fixed polarization �= �N↑−N↓� /N and depends only
on rs. The spin susceptibility  will be considered in a sepa-
rate publication where the energy as a function of polariza-
tion � will be presented.40 The other method we use to com-
pute both � and  is to calculate the momentum resolved
excitation energies of the system and exploit the sum rules
which exactly relate the collective modes of the long-
wavelength spectrum with � and . It is possible to derive
the following relations:41

���k → 0� = vF�k���FV�k → 0� +
�0

�
, �5�

�	�k → 0� = vF�k��0


, �6�

where ���k� ��	�k�� is the energy of the lowest charge �spin�
excitation with momentum k, �F is the density of states of the
free-electron gas at the Fermi energy, and �0 and 0 are its
charge compressibility and spin susceptibility, respectively.

In order to find out the lowest energy states of a given
momentum k we employ a method proposed by Ceperley and
Bernu,42 which is a generalization of the transient estimate
used in the projection Monte Carlo �DMC or LRDMC�
framework. This method is based on the idea that it is pos-
sible to compute the excitation spectrum of a system in a
direct and variational way by projecting the initial basis
functions to their lowest energy state with the given symme-
try. In our case the basis set is the Feynman ansatz,43 i.e.,
��k���0�∀k for the charge excitations and 	�k���0�∀k for

the spin excitations, where 	�k�=
 j
		eikrj
	

is the Fourier
transform of the spin density. In the following we assume to
work with the charge excitations, but the same applies for
	�k�. Since the basis set is orthogonal, the method in Ref. 42
is greatly simplified, as every k component is decoupled. For
each k, we have to calculate

�0��̂�k,��Ĥ�̂�− k,0���0�
�0��̂�k,���̂�− k,0���0�

=



i

�k
i Ak

i e−���k
i −E0�



i

Ak
i e−���k

i −E0�
, �7�

where �̂�k ,�� is written in the Heisenberg representation with
imaginary time evolution, ��k

i � is the ith excited state with
momentum k, �k

i is its energy, Ak
i = ��k

i ���−k���0��2 is the
spectral weight of the eigenvalue expansion, and E0 is the
ground-state energy. For large � the ratio in the above equa-
tion will converge to the lowest energy �k

0 of a given k,
provided Ak

0 is nonzero. Another limitation is given by the
exponentially small denominator, which will exponentially
increase the statistical noise of the estimate as the projection
time increases. Both the numerator and denominator in Eq.
�7� are evaluated by means of the forward walking34,35 pro-
cedure based on the DMC or LRDMC sampling. Indeed, for
large enough � the left—hand side of Eq. �7� can be rewritten
as
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FIG. 3. �Color online� Scaling of the 4kF component of the
structure factor with respect to the number of particles. The scaling
is reported for various densities with b=0.1. The lines are the best
fit of the function in Eq. �4� given by the LL theory.

SHULENBURGER et al. PHYSICAL REVIEW B 78, 165303 �2008�

165303-4



� dr1dr2��− k�G�r1,r2,��EL�k,r2���k�P�r2�

� dr1dr2��− k�G�r1,r2,����k�P�r2�
, �8�

where EL�k ,r�=
H��k��T�r�
��k��T�r� is the local energy of ��k���T�,

P�r�=�T�r��0�r� is the QMC mixed distribution, and
G�r1 ,r2 ,��=�T�r1�r1�e−�H�r2� /�T�r2� is the importance
sampled Green’s function.

Because the excitation energies ��k�=�k
0−E0 are com-

puted relative to the ground-state energy E0, there is a can-
cellation of errors since the sample generated to compute E0
and �k

0 is the same. Therefore a modest size calculation is
enough to get converged energies. The convergence with the
propagation time can be more difficult to obtain. However,
for the long wavelengths ��k���0� is a good approximation
to the lowest excited state with momentum k and the ener-
gies can be determined easily with a short projection time �.
When the small k range of energies is fit to the form in Eqs.
�5� and �6�, � and  are determined. The results for the
charge compressibility obtained with this method agree with
the second derivatives of the total energy in all cases we
have made the comparison, as is shown in Fig. 4.

The knowledge of � and  can shed more light on the
properties of the liquid-to-quasicrystal crossover. By looking
at the charge compressibility �Fig. 4�, it is apparent that the
role of the electron correlation is becoming increasingly im-
portant in the proximity of the crossover, where there is sig-
nificant discrepancy between the Hartree-Fock �HF� and
QMC values of �. In particular, the correlation makes the
system softer than the HF, which is consistent with a more
pronounced localization of the electrons. At even lower den-
sities the charge compressibility of the unpolarized system is

approaching that of a fully polarized �or spinless fermion�
gas. The difference between the two is going exponentially
to zero and they almost overlap for rs�4 �with b=0.1�. This
means that the energy of the spin excitations is getting
smaller and smaller as the density decreases. This feature is
revealed by the inverse spin susceptibility . The 0 / ratio
is plotted in Fig. 5. This value becomes exponentially small
at low densities, where it is difficult to get a statistically
accurate QMC estimate, since the sampling of the spin is
“frozen” by the presence of quasinodes �pseudonodes� be-
tween unlike spin electrons.18 The strong interaction causes
the electrons to repel each other at short range, and the cor-
responding wave function is very small at the coalescence
points of electrons with opposite spin. Consequently the
spin-flip rate in the QMC sampling becomes small and the
efficiency decreases. However the charge properties do not
seem to be affected by this slowing down. The physical rea-
son for the quasinodes will become even more apparent in
Sec. III, when we will discuss the Tonks-Girardeau physics
of the screened wire.

In the low-density regime where exact Monte Carlo sam-
pling becomes difficult the WKB approximation is useful for
determining the dynamical properties of the electron gas.
Following the example of Matveev44 we use the WKB ap-
proximation to determine the rate at which two electrons
exchange by calculating the energy barrier that they must
overcome. Although fluctuations prevent the formation of a
Wigner crystal, the equilibrium positions of the electrons are
assumed to be equally spaced with periodicity 2rs. Central to
the accuracy of this approximation is the fact that at low
densities the tunneling is dominated by the effect of the po-
tential, and the statistics can be ignored. Furthermore, all
electrons are treated as uncorrelated except for a single pair
which is allowed to exchange. In contrast to Matveev’s ap-
proach we assume that the other electrons are distributed
about their equilibrium positions according to the harmonic
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approximation with a Gaussian spread instead of being fixed
delta function point particles. Taking the initial positions of
the two exchanging electrons to be at x=0 and x=2rs, they
feel a static potential given by

VWKB�x� = 

n�0,1

�
−�

�

��y�V�x − 2nrs + y�dy , �9�

where ��y�=�� /� exp�−�y2� is the equilibrium charge den-
sity of the nonexchanging electrons and V�x� is the interpar-
ticle potential. The harmonic approximation gives �

=�m �2W�x�
�x2 , where W�x� is the potential at a given lattice site

due to an infinite array of electrons spaced as 2rs.
At low densities the electrons behave as a spin chain

obeying the Heisenberg Hamiltonian were the spin flips are
mediated by an exchange of nearest-neighbor electrons, so
the spin susceptibility can be determined from the energy
barrier computed within the WKB approximation by analogy
with the Heisenberg Hamiltonian in 1D as shown by
Matveev.44 The spin velocity of the equivalent Heisenberg
spin chain can be found from the Bethe ansatz solution,45,46

yielding v	=�Jrs, where J is the size of the energy barrier in
the WKB approximation. This gives the susceptibility
through Eq. �6�.

Where the density is large enough that QMC reliably
samples the spin exchanges the spin susceptibility computed
using the forward walking techniques agrees well with the
WKB estimate only after the smearing of the electron sites
given by the harmonic approximation. It is therefore impor-
tant to use the potential in Eq. �9� to have an accurate esti-
mate of the exchange at intermediate densities. This agree-
ment and the fact that the dynamical many-body corrections
to the WKB estimate are very small at low density47 justify
the use of WKB for dilute systems where it is difficult to
extract information from the QMC calculations. In addition,
the exponential decay of v	 versus �rs obtained in this way is
in agreement with previous results44,48,49 for potentials where
they can be compared.

Figure 5 summarizes our findings for the unscreened wire.
The liquid-to-quasicrystal crossover is shifted to higher den-
sities for thinner wires, while the spin susceptibility is al-
ways significantly different from zero in the crossover region
for the values of the confinement taken into account. The
smallest b we studied �b=0.0001� corresponds to one of the
thinnest confinements realized experimentally.32,33 The spin
exchange is still sizable in the crossover region due to the
not-so-long localization length of the electrons and not-so-
thin width of the wire. Therefore, in our study we did not
find any signature of the Coulomb-Tonks gas phase in be-
tween the liquid and quasi-Wigner crystal, which was
claimed by Fogler for ultrathin wires.25 However, the struc-
ture factor plotted in Fig. 1 reveals the tendency for electrons
to approach the noninteracting spinless fermion behavior �the
limit where the Coulomb-Tonks gas picture holds� as the
wire width decreases. The fundamental difference with re-
spect to the noninteracting spinless picture is the pronounced
peak at 4kF, which characterizes the Coulomb long-range
interactions at low density.

III. SCREENED INTERACTIONS IN GATED WIRES

The primary interest of this paper is to model a quantum
wire formed in semiconducting nanodevices. In that case
there is almost always a metallic gate that screens the long-
range �1 /x� potential. To see the changes that such a gate
would cause, we introduce a perfectly conducting metal
plane parallel to the wire located a distance R away. Using
the electrostatic method of images the potential is con-
structed by assuming that a wire is placed at a distance 2R
from the original one with the same particle distribution but
opposite sign. The equation for this potential is

V�x� =� � dr�dr��
�b�r���b�r���

��r� − r���2 + x2

−� � dr�dr��
�b�r���b�r���

��r� − r�� − 2R� �2 + x2
= Vb�x� − Vint�x,R� ,

�10�

where r� and r�� are transverse vectors and �b�r��= 1
b�2�

�exp�− r2

2b2 � is the ground-state charge distribution of a two-
dimensional harmonic oscillator with the wire’s confining
potential Vwire�r�= r2

4b4 . The first integral gives the effective
unscreened interparticle potential Vb�x� described in Sec. II
and the second one is the potential due to the image charge
on the screening wire Vint�x ,R�.

The quasi-Wigner crystal correlations derived by Schulz23

apply only when the interaction is long range �1 /x�. In the
case of the screened interaction above the potential decays as
4R2 /x3 at large distances, so a simple scaling argument
shows that the Wigner crystal correlations should be absent
at very low densities. Indeed, if rs�8R2 /� the typical ki-
netic energy of the electrons, the Fermi energy EF, is larger
than the potential energy computed at the mean interparticle
distance �2rs�. At these low densities Matveev44 has pointed
out that it is possible to map the screened short-range inter-
action into a repulsive contact potential

V�x� = U��x� , �11�

where the constant U is chosen so the delta function potential
and the screened one have equal transmission coefficients.
On the other hand, in the density range 1�rs�8R2 /� the
1 /x shoulder of the potential can induce 4kF correlations,
which are strong but not strong enough to stabilize any sort
of quasiorder. Calculations of the finite-size scaling of the
4kF peak of the structure factor for b=0.1 and R=200 show
the saturation of its height for N�100, and so demonstrate
the absence of the quasi-Wigner crystal correlations when
screening is introduced despite quite a large distance to the
metallic gate �Fig. 6�. Only in the limit of R→� does one
recover the unscreened potential and the possibility for a
quasi-long-range charge order.

The lack of the quasi-Wigner crystal state does not change
the crossover to the spinless fermion physics present in the
unscreened system. Even though the quasi-long-range charge
order is absent at low densities, the charge compressibility
still approaches that of a gas of spinless fermions as the
density decreases. This approach can be seen in Fig. 4. It is
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therefore clear that the spin crossover does not depend on the
long-range correlations. In fact, this crossover can be repro-
duced by a system of electrons interacting via the delta func-
tion interaction in Eq. �11� where the constant U is large, an
interaction that has no long-range piece whatsoever.

The low-density limit with screened interactions is par-
ticularly interesting as the screening introduces a new fea-
ture. At low densities the electron-electron repulsion at short
range makes exchanges between electrons virtually impos-
sible, corresponding to the limit U→�. As a result for the
ultrathin wire with strong screening �b�1 and rs�8R2 /��,
the mapping of the interaction to the potential in Eq. �12�
becomes exact. In this situation not only do the electrons
behave as spinless fermions, but the charge velocity ap-
proaches that of noninteracting spinless fermions �v�=2vF�.
This is analogous to the case of bosons with infinite repul-
sive contact interactions, �or impenetrable particles� where
the system can be mapped into a noninteracting Fermi gas.26

The impenetrable Bose system is often called a Tonks-
Girardeau gas. In our case the situation is analogous, namely,
the fermions become impenetrable due to an effective infinite
contact repulsion, and so they behave as they were noninter-
acting and spinless. We refer to this behavior as Tonks-
Girardeau regime. One of its features is the presence of
nodes in the wave function at the coalescence of unlike spin
pairs. This is the extreme case when the pseudonodes that
complicate the ergodicity of Monte Carlo calculations at low
density as reported in Sec. II become actual nodes.

While this effect has been discussed in the
literature,24,25,44 our work provides quantitative predictions
for the onset of the noninteracting spinless behavior. Figure 7
shows the charge velocity in the limit of low density for
different values of the screening in the thinnest wire we stud-
ied �b=0.0001�. We found that in order for the Tonks-
Girardeau behavior to manifest itself, the distance to the gate
R must be less than 0.1 and the density must be lower than
rs=1. For R larger than 0.1, at low density the charge veloc-
ity does not converge to the noninteracting spinless fermion
limit �2vF�, but saturates at a larger value.

It is possible to see the transition of the screened electron
gas to the noninteracting spinless fermion behavior more di-

rectly by analyzing the static structure factor, as was done in
the unscreened case. In Fig. 8, the S�k� is plotted at different
densities for the ultrathin wire with b=0.0001 and gate lo-
cated at R=0.1 from the wire. Contrary to the case of the
unscreened wire �Fig. 1 lower panel�, at low densities the
peak at 4kF is absent and the structure factor approaches that
for noninteracting spinless fermions quite closely. Notice that
at the same time the charge velocity approaches the value of
2vF �see Fig. 7�.

The same study was repeated for the wire with b=0.1.
Here the short-range behavior of the potential is much less
repulsive than in the b=0.0001 case and the same value R for
the screening. The result of this is that the charge velocity
does not converge to 2vF even for a gate as close as R=0.1,
which equals the width of the wire and thus represents the
geometric limit of validity for the uncorrelated interwire in-
teraction. Therefore for b=0.1 and thicker wires, whose
widths are realizable in semiconducting nanostructures, we
did not find the Tonks-Girardeau behavior in our calcula-
tions.
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IV. LOCALIZATION TRANSITION IN TWO PARALLEL
GaAs WIRES

Quasi-one-dimensional systems can be realized in GaAs/
AlGaAs heterostructures by means of various techniques.
One such technique is cleaved edge overgrowth, which has
been applied recently to build an experimental setup with
two parallel wires so that it is possible to observe momentum
resolved tunneling from one to the other.6–12 In this series of
experiments both the energy of the tunneling electrons and
their momentum could be tuned by changing the relative
chemical potential and the applied magnetic field. This setup
allows the dispersion relations of each wire to be probed in a
quite straightforward manner. Steinberg et al.12 further ex-
plored how this tunneling is affected by a gate that depletes
the density of the electrons in the upper wire. They found
that as the density is decreased there is a marked transition in
the tunneling interpreted as a transition from a liquid to a
localized state.

In the experiment, the center to center distance between
the two wires is R=31 nm. The upper wire is 2 �m long
and 20 nm wide. It is the probe to study the electron local-
ization. The electrons tunnel from the lower wire, which has
a width of 30 nm and is taken to be infinitely long. This is
also a screening medium for the upper wire. The system is
fabricated out of GaAs for which �=13.1 and the effective
electron mass is m�=0.067me. This gives an effective Bohr
radius a0

�= ��2

m�e2 �10 nm. For the experiment in question the
electron density in the lower wire is around 60 �m−1, which
corresponds to rs=0.83 in a0

� units, while in the upper wire
the density is varied by tuning the gate voltage VG. The ef-
fect of VG on the lower wire is very small12 and can be
neglected.

The results presented in Sec. III offer an avenue to ex-
plore the role of the electron correlation in the transition
observed in the experiment. As the density in the wire de-
creases the strength of the potential increases relative to the
kinetic energy. One effect of this increased relative strength
is that exchanges between the electrons are suppressed, caus-
ing the system to crystallize. To better quantify the impor-
tance of this effect in the experimental system, in this section
we take into account a more realistic potential, assuming the
electrons are screened by the lower wire instead of an infinite
metallic gate. To construct this interaction we neglect the
correlation between the wires and treat the screening effects
coming from the electrons in the lower wire within the
linear-response theory. We write the potential in Fourier
space

V�k,R� = Vb�k� + Vint�k,R��k�Vint�k,R� , �12�

where Vb�k� and Vint�k ,R� defined in Eq. �10� are the intra-
and interwire potentials, respectively. Vint�k ,R� is evaluated
by assuming that the thickness of the two wires is the same
�and equal to the upper wire�. This significantly simplifies
the form and the calculation of the interwire interaction. �k�
is the static density-density response function of the lower
wire, taken in the random-phase approximation �RPA�

RPA�k� =
0�k�

1 − Vb��k�0�k�
, �13�

where 0�k�= 1
�k ln�

k−2kF

k+2kF
� is the static response function for a

one-dimensional noninteracting Fermi gas and b� is the
width of the lower wire. The experimental geometry sets the
parameters in our quasi-one-dimensional interaction V�k ,R�.
The confinement potential for the upper wire is chosen so
that the electrons are constrained to be inside the 10 nm thick
wire. Specifically, we require that the radial root mean
squared displacement is equal to the lithographic thickness
yielding b=0.707��1 /�2� for the upper wire. The choice of
confinement also agrees well with the experimental observa-
tion that a second mode becomes populated at n=80 �m−1.6

Similarly, the lower wire’s thickness is given by b�=1.061
��1.5 /2�. The distance between the wires is R=3.0, while
the Fermi momentum in the RPA response function for
the lower wire is set by the density rs=0.83.

Our screened potential in Eq. �12� is similar to that used
by Fiete et al.,31 who chose a perfect metal response function
which is valid when the screening wire is at very high den-
sities. Here we use the RPA which depends on the experi-
mental density of the lower wire through the value of the
Fermi momentum kF. We notice that our screened potential
equals that in Ref. 31 at k=2kF and in the limit of small k,
namely, the long-range tail is the same, decaying approxi-
mately as 1 /x5/4.

We first analyze the homogeneous system and then ex-
plicitly include a longitudinal confinement in our simulations
to quantify the finite-length impact on the properties of the
system and more closely reproduce the experimental situa-
tion. In the homogeneous system of electrons interacting via
the potential in Eq. �12�, we observe the appearance of a 4kF
peak in the S�k� around rs=2.2. As shown in Fig. 9, it is
clearly visible for rs�2.6, whereas no peak is discernable for
rs
1.9. This crossover is similar to that found for long-
range 1 /x interactions. However, the important difference
here is that the quasi-long-range order is not present in this
case. Indeed, we have made a systematic study of the scaling
with size, and the height of the peak converges to a finite
value in the thermodynamic limit for all densities taken into
account. This behavior is consistent with the decay of the
screened interaction which is faster than 1 /x.23 Therefore,
the crossover is between a high-density liquid to one with
strong 4kF correlations, whose onset can be related to the
transition occurring in the experimental system. We observe
that the experiment is performed in a rather strong magnetic
field, which is used to tune the momentum of the tunneling
electron. Since the spin susceptibility is large in the proxim-
ity of the crossover, as we have seen previously for the un-
screened wire, it is likely that the wire will be partially or
fully polarized in the experimental setup. For a more quan-
titative argument, one should look at the energies of the po-
larized and unpolarized states, which are provided for the
unscreened wire.18 In any case, in order to have an idea of
the effect of the spin polarization on the crossover density,
we have also performed simulations at �=0.75. A partial spin
polarization is used to allow the physics due to the singulari-
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ties of the structure factor at the Fermi surface to be disen-
tangled from the physics due to the mean interparticle spac-
ing, which is directly related to the 4kF correlations. As one
can see in Fig. 9, the crossover density is insensitive to the
spin polarization, at least in this strongly correlated regime.

The above treatment of the upper wire as infinite and
homogeneous can be improved to resemble the experiments
more closely. In the study of the 1DEG there are strong
effects due to any perturbation that breaks the translational
invariance of the system. For instance, Tserkovnyak et al.7

showed that the asymmetry in the oscillations of the conduc-
tance as a function of the momentum transferred between the
two wires can be explained at the WKB level by having a
soft confinement potential for the upper wire. In a later paper
they accurately determined the functional form of the longi-
tudinal confinement by fitting its parameters to reproduce the
period of those oscillations as a function of the magnetic

field applied to the sample.8 The potential that provided a
good fit to their data reads

V�x� = EF�2x

L
�8

, �14�

where EF is the Fermi energy of the upper wire and L is
approximately 1.5 times the lithographic length of the upper
wire, namely, L=300 in a0

� units.
We used the above potential together with the interparticle

potential in Eq. �12� to study the effect of the confinement on
the transition. Although in principle diffusion Monte Carlo
yields an unbiased ground-state energy in one dimension
even for a confined system �the nodes being exactly deter-
mined by the coalescence conditions just as in the infinite
homogeneous wire�, in practice it is necessary to improve the
guidance wave function to reduce the variance of our esti-
mates. The Jastrow factor used in the homogeneous system
�Eq. �3�� is replaced by a more sophisticated factor including
one-, two-, and three-body terms, fully optimized by means
of the stochastic reconfiguration �SR� algorithm,50,51 while
the Slater part is kept the same as in Eq. �1�. The one-body
Jastrow exp�J1� is needed to localize the electrons in the
finite system. It reads

J1 = 

i=1

N

�− �xi
4 − �xi

5� , �15�

where � is a free parameter and �=�Eu�2 /L�4 /5 is fixed to
cancel the contribution of the potential to the local energy at
the leading order in the large distance expansion. The two-
body exp�J2� and three-body exp�J3� Jastrow factors are
given by

J2 = 

�i	���j	��

u2
		��xij� �16�

and

J3 = 

�i	�,�j	��,�k	��

u3
		��xij�u3

	�	��xjk� , �17�

where xij is the interparticle distance. Since the finite system
with screened interactions is dominated by short-range cor-
relations, we chose un�x� to have a simple Gaussian form

un
		��x� = �n

		 exp�− x2/�n
		�� , �18�

with �n
		� and �n

		� variational parameters. Energy minimiza-
tion improves the quality of the variational wave function
and stabilizes the forward walking estimate35 of the expecta-
tion values on the DMC projected state.

Again the static structure factor is determined for different
densities of electrons in the upper wire. In contrast to the
calculations for the homogeneous system, the density of the
electrons is not a direct input to the calculation. Instead, we
control the number of electrons in the wire which are then
free to relax according to the external potential. An average
density can be determined by considering the locations of the

2k̃F and 4k̃F peaks of the structure factor and comparing their

value to those of an infinite array of electrons 2k̃F= �

2r̃s
and
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FIG. 9. �Color online� Static structure factor for a homogeneous
wire with b=0.707 interacting with the effective potential in Eq.
�12�, which includes the screening by another homogeneous wire
with rs=0.83, b=1.061, and R=3. The structure factor is plotted for
several values of the upper wire density, with rs ranging from 1.7 to
4.6 and also for two values of the spin polarization with �=0 and
�=0.75. The calculations have been converged to the thermody-
namic limit, requiring N=62 for rs
3.0 and N=78 for rs=4.6 sub-
ject to periodic boundary conditions. The structure factor has been
plotted versus k /kF, where kF is the Fermi momentum in the unpo-
larized electron gas. The similarities of the peak heights at 4kF for
both values of � show the relative insensitivity of the crossover to
spin polarization. The shoulder in S�k� for the high-density curves
with �=0.75 is due to the Fermi surface of the majority species of
electrons.
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4k̃F= �

r̃s
, r̃s being the effective density in the system. Using

these conventions, the structure factor for several different
numbers of electrons is plotted in Fig. 10.

In addition to the formation of a broad peak in the S�k� at
4kF around N=80, which corresponds to r̃s=2.3, the density
profile n�x�= 
i��x−xi�� of the electrons also shows a clear
cut sign of the transition. At low densities, the electrons are
distributed in order to minimize the interparticle repulsion.
This leads to N oscillations in the density profile of the wire,
a configuration also called “Wigner molecule,” �Ref. 52�
which corresponds to the 4kF peak in the S�k�. When the
density is increased, the number of peaks in the density pro-
file is reduced by a factor of 2, the Pauli exclusion principle
between like spin particles is the only factor that prevents the
electrons form crossing each other. At the same time the 4kF
peak in the S�k� disappears and only a 2kF singularity is
present. The density is plotted in Fig. 11 for half of the wire
as the system is symmetric under inversion around its center.
This plot also suggests a transition near N=80.

Surprisingly, the calculations with the confinement poten-
tial and the infinite wire give very similar structure factors in
the vicinity of the transition, suggesting that the interparticle
correlations are not strongly affected by the external confine-
ment at those densities. At lower densities the peak at 4kF is
much larger for the homogeneous system because of the lim-
ited number of particles in the finite wire. Both the infinite
and finite wires show a transition from a system with 2kF
correlations to a state where correlations have a 2rs period-
icity. The crossover occurs around rs=2.3, which corre-
sponds to the density of 22 �m−1 in a GaAs heterostructure.
This is very close to the density found by Steinberg et al.
�20 �m−1� for the localization transition in wires where one
subband is occupied. However it seems that in the experi-
ment the localization involves only few particles �up to 12 in
the highest density localized state�, i.e., only a section of the
wire takes part in the transition. This is an important differ-
ence with respect to our calculations where the transition
takes place throughout the system in a quite homogeneous
way. In our case the fluctuations of the particles around the
Wigner peaks are a combined effect of the broken transla-
tional symmetry induced by the external confining potential
and the strong correlations which causes the particles to repel
each other. A nonhomogeneous behavior is found at the edge
of the wire where the confining potential in Eq. �14� turns
upward. As one can see in Fig. 11, the density variations are
larger near the edge, which can be understood in terms of a
local mean-field description. At the edge of the wire the ef-
fective chemical potential �0−V�x� is smaller, corresponding
locally to a fluid at much lower density.

Apart from these features, we did not find any evidence
for a Wigner correlated patch embedded in a liquidlike sys-
tem, although these seem to be found in the experiments.
Therefore it may be essential to take into account other fac-
tors that can affect the experimental results. For instance, one
of the top metallic gates used to tune the upper wire density
could induce a plateau in the external potential, nucleating a
Wigner region as suggested in Refs. 30 and 53. Notice how-
ever that the densities of our homogeneous system should be
compared with the densities at the plateau, which are experi-
mentally determined.12 On the other hand, the role of disor-
der is not clear. Although in the liquid phase the system is in
a ballistic regime, when the conductance is quantized the
disorder could take over in the localized phase and affect the
charge distribution in the wire. AlAs wires, where the disor-
der is stronger, revealed conductance resonances explained
in terms of Coulomb blockade �CB� physics.54 CB behavior
has also been found in the localized phase of GaAs wires.12

Even if there are features that still need explanation, our
calculations show that the electronic correlation plays a very
important role at the experimental conditions, as the
2kF-to-4kF correlations transition takes place exactly in the
proximity of the critical density for localization found in the
experiment. In addition to this result, which is the main out-
come of the paper, we also determined the charge and spin
velocities by means of the QMC method explained in Sec. II
and the effective J coupling via the WKB approach. We
computed those quantities close to the transition for the ho-
mogeneous wire with rs=1.25 �40 �m−1�. The charge veloc-
ity turns out to be v�=2.33vF. The corresponding LL param-
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eter g=vF /v�=0.43 is in agreement with previous
estimates31 and comparable to the experimental g�0.5, mea-
sured at the density of 40 �m−1.10 At the same density the
experimental value for vF /v	 is in the range of 1.1–1.6,
while we found vF /v	=1.24 at 40 �m−1.

In Fig. 12 we plot the full dependence of the spin veloci-
ties on the density computed with the perturbative general-
ized RPA �GRPA�,55 WKB, and the exact QMC methods.
Although the GRPA is poor near the localization transition, it
agrees with the QMC at high density. As noted above the
experimentally measured spin velocities are also in rough
agreement with the QMC estimate in a range of densities
around n=40 �m−1. To show the importance of the micro-
scopic details of the interaction in reproducing the measured
values we also display in Fig. 12 the GRPA prediction based
on a different model potential which assumes a screening
due to a metallic gate at R=50.10 This latter model gives
virtually unrenormalized spin velocities �v	�vF� up to n
=40 �m−1 in contrast with the strong suppression of the
values found in the experiment. For the microscopic details
which determine the spin velocities the thickness also plays a
very important role, as it sets the short-range behavior of the
interaction, and thus the value of J for the effective spin
model.

Last but not least, our WKB estimate of J turns out to be
of the order of the experimental temperature �T=0.25 K�
around n=10 �m−1. This means that at least the first few
Coulomb blockade peaks in the experiment should be in a
spin incoherent regime, where the LL description by Fiete et
al. applies, although in the vicinity of the transition the spin
degrees of freedom are not dominated by thermal broaden-
ing.

V. CONCLUSIONS

We have presented extensive quantum Monte Carlo cal-
culations to study the properties of electrons constrained to
one dimension with a harmonic confinement and interacting
via several different potentials.

For unscreened interactions with a long-range 1 /x tail
there are three different regimes. At high density the elec-
trons behave as a correlated liquid, transitioning to a quasi-
Wigner crystal as the density decreases, where strong 4kF
correlations follow the LL predictions.23 We accurately de-
termined the crossover density for various thicknesses and
found that the crossover is pushed to higher densities for
thinner wires. Finally at very low densities the charge de-
grees of freedom are described by spinless fermions and the
spins decouple with exponentially small exchange interac-
tions. We approached this limit by using the WKB approxi-
mation.

When screening is introduced, the interactions are not
long range and the quasi-Wigner crystal order is destroyed.
However, 4kF correlations are still present even in the case of
screened interactions. The spinless fermion regime acquires a
new behavior when the wire is very thin and the screening
makes the potential short range. In this case the particles act
as though they were noninteracting and spinless in analogy
to physics previously studied for bosons with an infinite con-
tact repulsion.26

We applied our numerical approach to analyze a model
chosen to realistically describe the double wire system stud-
ied in the experiments of Steinberg et al.,12 where a localiza-
tion transition is observed. Our model assumes screening due
to a second wire described within linear-response theory and
includes the finite length of the wire via the external poten-
tial derived in Ref. 8. We show that a crossover from a liquid
to a state with 4kF correlations occurs around the localization
density found in the experiment. Additionally, our exact
Monte Carlo calculations yield charge and spin velocities for
this model in agreement with those observed in the experi-
ment close to the transition. We stress that the observables
such as the transition density and the spin velocity are par-
ticularly sensitive to the microscopic details of the model
interaction. To reproduce all features of the experiment it
may be necessary to include further refinements such as a
more accurate modulation of the external potential due to the
gates, the effects of higher subbands in the transverse direc-
tion, and the full treatment of interwire electronic correlation
by explicitly including the electrons in the other wire. How-
ever, the simple model considered here shows that the exact
treatment of electronic correlation is essential to quantita-
tively describe the localization transition seen in experi-
ments.
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FIG. 12. �Color online� Inverse spin velocity of the infinite wire.
The red circles indicate estimates from the WKB approximation,
whereas the black triangles are determined using the QMC method
described in Sec. II. The two lines are estimates due to the pertur-
bative generalized random-phase approximation �Ref. 55�
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screened by the lower wire.
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